Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Braz. j. med. biol. res ; 51(2): e6784, 2018. tab, graf
Article in English | LILACS | ID: biblio-889027

ABSTRACT

Studies have suggested that total energy intake and diet composition affect lifespan and ageing. A high-fat diet induces oxidative stress and affects the development of diseases. In contrast, antioxidants are capable of reducing its harmful effects. Yerba mate beverages are an important source of antioxidants, but there is scarce knowledge about their effects on suppressing fat accumulation. Here, we investigated the compounds present in yerba mate extracts and assessed their effects on Drosophila melanogaster given a high cholesterol diet. LS-ESI-MS analysis showed the presence of matesaponins, phenolic compounds and methylxanthines in all of the examined extracts. In Drosophila, under extract treatment conditions, the mean lifespan was significantly extended from 38 to 43 days, there was an increase in the ability to support induced stress and decrease in lipid peroxidation products. Moreover, yerba mate extracts recovered the glutathione S-transferases (GST) activity and reduced the cholesterol level. Taken together, our results support that extracts can extend lifespan by reducing the detrimental effect of a high-fat diet in D. melanogaster, and this outcome can be associated with the compound content in the extracts. This study improves the understanding of natural interventions that reduce stress-induced oxidative damage, which is fundamental in promoting healthy ageing.


Subject(s)
Animals , Plant Extracts/pharmacology , Oxidative Stress/drug effects , Ilex paraguariensis/chemistry , Drosophila melanogaster/physiology , Longevity/drug effects , Antioxidants/pharmacology , Oxidative Stress/physiology , Drosophila melanogaster/growth & development , Diet, High-Fat , Longevity/physiology
2.
Braz. j. med. biol. res ; 51(9): e7552, 2018. tab, graf
Article in English | LILACS | ID: biblio-951753

ABSTRACT

Guarana (Paullinia cupana) is habitually ingested by people in the Amazon region and is a key ingredient in various energy drinks consumed worldwide. Extension in longevity and low prevalence of chronic age-related diseases have been associated to habitual intake of guarana. Anti-aging potential of guarana was also demonstrated in Caenorhabditis elegans; however, the mechanisms involved in its effects are not clear. Herein, we investigated the putative pathways that regulate the effects of guarana ethanolic extract (GEE) on lifespan using C. elegans. The major known longevity pathways were analyzed through mutant worms and RT-qPCR assay (DAF-2, DAF-16, SKN-1, SIR-2.1, HSF-1). The possible involvement of purinergic signaling was also investigated. This study demonstrated that GEE acts through antioxidant activity, DAF-16, HSF-1, and SKN-1 pathways, and human adenosine receptor ortholog (ADOR-1) to extend lifespan. GEE also downregulated skn-1, daf-16, sir-2.1 and hsp-16.2 in 9-day-old C. elegans, which might reflect less need to activate these protective genes due to direct antioxidant effects. Our results contribute to the comprehension of guarana effects in vivo, which might be helpful to prevent or treat aging-associated disorders, and also suggest purinergic signaling as a plausible therapeutic target for longevity studies.


Subject(s)
Animals , Plant Extracts/pharmacology , Caenorhabditis elegans/drug effects , Paullinia/chemistry , Antioxidants/pharmacology , Time Factors , Aging/drug effects , Caenorhabditis elegans/physiology , Reverse Transcriptase Polymerase Chain Reaction , Longevity/drug effects , Antioxidants/isolation & purification
3.
Clinics ; 72(8): 491-498, Aug. 2017. tab, graf
Article in English | LILACS | ID: biblio-890723

ABSTRACT

OBJECTIVE: The free radical theory of aging suggests that cellular oxidative damage caused by free radicals is a leading cause of aging. In the present study, we examined the effects of a well-known anti-oxidant amino acid derivative, selenocysteine, in response to environmental stress and aging using Caenorhabditis elegans as a model system. METHOD: The response to oxidative stress induced by H2O2 or ultraviolet irradiation was compared between the untreated control and selenocysteine-treated groups. The effect of selenocysteine on lifespan and fertility was then determined. To examine the effect of selenocysteine on muscle aging, we monitored the change in motility with aging in both the untreated control and selenocysteine-treated groups. RESULTS: Dietary supplementation with selenocysteine significantly increased resistance to oxidative stress. Survival after ultraviolet irradiation was also increased by supplementation with selenocysteine. Treatment with selenocysteine confers a longevity phenotype without an accompanying reduction in fertility, which is frequently observed in lifespan-extending interventions as a trade-off in C. elegans. In addition, the age-related decline in motility was significantly delayed by supplementation of selenocysteine. CONCLUSION: These findings suggest that dietary supplementation of selenocysteine can modulate response to stressors and lead to lifespan extension, thus supporting the free radical theory of aging.


Subject(s)
Animals , Aging/drug effects , Selenocysteine/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Oxidative Stress/drug effects , Antioxidants/pharmacology , Reproduction/drug effects , Stress, Physiological/drug effects , Time Factors , Reproducibility of Results , Age Factors , Caenorhabditis elegans/radiation effects , Fertility/drug effects , Locomotion/drug effects , Longevity/drug effects
4.
Braz. j. med. biol. res ; 49(9): e5235, 2016. tab, graf
Article in English | LILACS | ID: lil-788945

ABSTRACT

Improving overall health and quality of life, preventing diseases and increasing life expectancy are key concerns in the field of public health. The search for antioxidants that can inhibit oxidative damage in cells has received a lot of attention. Rosmarinus officinalis L. represents an exceptionally rich source of bioactive compounds with pharmacological properties. In the present study, we explored the effects of the ethanolic extract of R. officinalis (eeRo) on stress resistance and longevity using the non-parasitic nematode Caenorhabditis elegans as a model. We report for the first time that eeRo increased resistance against oxidative and thermal stress and extended C. elegans longevity in an insulin/IGF signaling pathway-dependent manner. These data emphasize the eeRo beneficial effects on C. elegans under stress.


Subject(s)
Animals , Caenorhabditis elegans/drug effects , Longevity/drug effects , Oxidative Stress/drug effects , Rosmarinus/chemistry , Stress, Physiological/drug effects , Caenorhabditis elegans Proteins/drug effects , DNA-Binding Proteins/drug effects , Forkhead Transcription Factors/drug effects , Signal Transduction/drug effects , Transcription Factors/drug effects
5.
Invest. clín ; 55(4): 352-364, dic. 2014. ilus, tab
Article in English | LILACS | ID: lil-783089

ABSTRACT

We investigated the effect of melatonin (MEL) in the activities of cytosolic superoxide dismutase (SOD) and catalase as well as in the levels of H2O2 and mitochondrial malondialdehyde (MDA) in paraquat-intoxicated Drosophila melanogaster. Paraquat (40 mM) was administrated for 36 h. Three groups of flies intoxicated with paraquat were used: PQ (exposed during 36h to paraquat), PQ-MEL (exposed during 36h to paraquat and then treated with MEL [0.43 mM] for 12 days) and PQ-Control (maintained in standard corn meal for 12 days). Two additional groups without pre-intoxication with PQ were added: Control (maintained in standard corn meal) and MEL (treated with MEL for 12 days). Immediately after PQ intoxication the concentration of MDA (17.240 ± 0.554 nmoles MDA/mg protein) and H2O2 (3.313 ± 0.086 nmol hydrogen peroxide/mg protein) and the activities of SOD and catalase (419.667 ± 0.731 and 0.216 ± 0.009 Units/mg of protein, respectively) in the PQ group were significantly increased with respect to Control. After 12 days of intoxication with PQ, the PQ-Control flies showed increases in H2O2 (4.336 ± 0.108) and MDA levels (8.620 ± 0.156), and in the activities of SOD and catalase (692.570 ± 0.433 and 0.327 ± 0.003, respectively) as compared to PQ-MEL (p<0.001). Treatment with MEL extended the life span of the groups PQ-MEL and MEL when compared to their corresponding controls. Motor activity decreased significantly in PQ-Control and PQ-MEL flies, suggesting that the damage caused by PQ affected the nervous system of flies. Our findings showed that oxidative damage caused by paraquat was observed even after 12 days and that melatonin mitigates this damage.


Investigamos el efecto de la melatonina (MEL) en la actividad de la superóxido dismutasa citosólica (SOD) y la catalasa, así como en las concentraciones del H2O2 y del malondialdehido mitocondrial (MDA) en la toxicidad inducida por paraquat (PQ) en Drosophila melanogaster. El paraquat (40 mM) fue administrado durante 36h. Tres grupos de moscas se utilizaron después de la intoxicación con paraquat: PQ (expuestas a paraquat durante 36 h), PQ-MEL (expuestas durante 36 horas a PQ y luego tratadas con MEL [0,43 mM] por 12 días) y PQ-Control (mantenidas en medio estándar por 12 días). Se incluyeron dos grupos adicionales sin pre-intoxicación con PQ: Control (mantenido en medio estándar) y MEL (tratado con MEL por 12 días). Inmediatamente después de la intoxicación con PQ, las concentraciones de MDA (17,240 ± 0,554 nmol de MDA/mg de proteína), H2O2 (3,313 ± 0,086 nmol de H2O2/mg de proteína) y las actividades de la SOD y catalasa (419,667 ± 0,731 y 0,216 ± 0,009 unidades/mg de proteína, respectivamente) se incrementaron significativamente con respecto al Control. Doce días después de la intoxicación con PQ, las moscas PQ-Control mostraron un aumento en la concentración de H2O2 (4,336 ± 0,108), de los niveles de MDA (8,620 ± 0,156) y en las actividades de la SOD y la catalasa (692,570 ± 0,433 y 0,327 ± 0,003, respectivamente) en comparación con el grupo PQ-MEL (p<0,001). El tratamiento con MEL extendió el tiempo de vida de los grupos PQ-MEL y MEL en comparación con sus correspondientes controles. La actividad motora disminuyó significativamente en las moscas de los grupos PQ-Control y PQ-MEL, lo que sugiere que el PQ afectó el sistema nervioso de las moscas. Nuestros hallazgos demostraron que el daño oxidativo causado por paraquat en las moscas fue observado aún después de 12 días de intoxicadas y que la melatonina logró mitigar este daño.


Subject(s)
Animals , Male , Antioxidants/pharmacology , Drosophila melanogaster/drug effects , Herbicides/antagonists & inhibitors , Melatonin/pharmacology , Oxidative Stress/drug effects , Paraquat/antagonists & inhibitors , Catalase/analysis , Drug Evaluation, Preclinical , Drosophila Proteins/analysis , Drosophila melanogaster/physiology , Herbicides/toxicity , Hydrogen Peroxide/analysis , Lipid Peroxidation/drug effects , Longevity/drug effects , Malondialdehyde/analysis , Mitochondria/drug effects , Motor Activity/drug effects , Paraquat/toxicity
6.
Invest. clín ; 54(2): 161-170, jun. 2013. ilus
Article in English | LILACS | ID: lil-740345

ABSTRACT

In the present study we compared the effects of minocycline and ascorbic acid in the life span, motor activity and lipid peroxidation of Drosophila melanogaster, in an effort to find a substance capable of providing protection against oxidative stress in aging. In the flies treated with minocycline a very significant increase in the life span (101 ± 1.33 days) was observed when compared to those treated with ascorbic acid and controls (42.3% and 38.4%, respectively). The motor activity of minocycline treated flies also increased significantly with respect to control and ascorbic acid fed flies, from the 3rd to the 9th week of treatment. With regard to lipid peroxidation, it was found that the levels of malondialdehyde (MDA) in flies treated with minocycline showed no statistical differences to the control on the first day of treatment, but a significantly lower content on the day of 50% survival. In contrast, in flies treated with ascorbic acid significantly elevated levels of MDA compared to control and minocycline treated flies were detected throughout. These results suggest a protective effect of minocycline against oxidative stress and aging in D. melanogaster. An inhibitory effect on reactive oxygen species production may be an important contributing factor.


En el presente estudio se compararon los efectos del ácido ascórbico y la minociclina en la duración del periodo de vida, la actividad motora y la peroxidación lipídica de Drosophila melanogaster en un esfuerzo por encontrar una sustancia capaz de proporcionar protección contra el estrés oxidativo en el envejecimiento. En las moscas tratadas con minociclina se observó un aumento significativo en la duración de la vida (101 ± 1,33 días) en comparación con los tratados con ácido ascórbico y los controles (42,3% y 38,4%, respectivamente). La actividad motora de las moscas tratadas con minociclina aumentó significativamente cuando se comparó con las tratadas con ácido ascórbico y el control, desde la 3ra hasta la 9na semana de tratamiento. Con respecto a la peroxidación lipídica, se encontró que los niveles de malondialdehído (MDA) en moscas tratadas con minociclina no mostraron diferencias estadísticas con relación al control en el primer día de tratamiento; sin embargo, se detecto una disminución significativa de la concentración de MDA cuando se alcanzó el 50% de sobrevida. En contraste, en moscas tratadas con ácido ascórbico observamos que los niveles de MDA estaban significativamente elevados, cuando se compararon con las moscas tratadas con minociclina y el control a lo largo de todo el tratamiento. Estos resultados sugieren un efecto protector de la minociclina frente al estrés oxidativo y el envejecimiento en D. melanogaster, aunque un efecto inhibidor sobre la producción de especies reactivas del oxígeno puede ser un factor contribuyente importante.


Subject(s)
Animals , Male , Ascorbic Acid/pharmacology , Drosophila melanogaster/drug effects , Longevity/drug effects , Minocycline/pharmacology , Motor Activity/drug effects , Aging/drug effects , Drosophila melanogaster/physiology , Lipid Peroxidation/drug effects , Malondialdehyde/analysis , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
7.
Clinics ; 68(5): 599-604, maio 2013. tab, graf
Article in English | LILACS | ID: lil-675745

ABSTRACT

OBJECTIVE: This study was performed to determine the effect of the tocotrienol-rich fraction on the lifespan and oxidative status of C. elegans under oxidative stress. METHOD: Lifespan was determined by counting the number of surviving nematodes daily under a dissecting microscope after treatment with hydrogen peroxide and the tocotrienol-rich fraction. The evaluated oxidative markers included lipofuscin, which was measured using a fluorescent microscope, and protein carbonyl and 8-hydroxy-2′-deoxyguanosine, which were measured using commercially available kits. RESULTS: Hydrogen peroxide-induced oxidative stress significantly decreased the mean lifespan of C. elegans, which was restored to that of the control by the tocotrienol-rich fraction when administered before or both before and after the hydrogen peroxide. The accumulation of the age marker lipofuscin, which increased with hydrogen peroxide exposure, was decreased with upon treatment with the tocotrienol-rich fraction (p<0.05). The level of 8-hydroxy-2′-deoxyguanosine significantly increased in the hydrogen peroxide-induced group relative to the control. Treatment with the tocotrienol-rich fraction before or after hydrogen peroxide induction also increased the level of 8-hydroxy-2′-deoxyguanosine relative to the control. However, neither hydrogen peroxide nor the tocotrienol-rich fraction treatment affected the protein carbonyl content of the nematodes. CONCLUSION: The tocotrienol-rich fraction restored the lifespan of oxidative stress-induced C. elegans and reduced the accumulation of lipofuscin but did not affect protein damage. In addition, DNA oxidation was increased. .


Subject(s)
Animals , Antioxidants/pharmacology , Caenorhabditis elegans/drug effects , Longevity/drug effects , Oxidative Stress/drug effects , Tocotrienols/pharmacology , Caenorhabditis elegans/physiology , DNA Damage/drug effects , Dose-Response Relationship, Drug , Lipofuscin/metabolism , Oxidation-Reduction/drug effects , Time Factors
8.
Invest. clín ; 54(1): 47-57, mar. 2013. ilus
Article in Spanish | LILACS | ID: lil-740335

ABSTRACT

La enfermedad de Wilson, es un trastorno hereditario autosómico recesivo causado por mutaciones del gen de la trifosfatasa de adenosina (ATP7B). Dicha mutación ocasiona intoxicación con cobre, generando manifestaciones clínicas por los efectos tóxicos del metal, principalmente a nivel del hígado y el encéfalo. Recientemente se han desarrollado modelos genéticos de la enfermedad para su estudio clínico. Sin embargo, la utilidad de los mismos es limitada por el hecho de que en tales modelos no se observan manifestaciones neurológicas. El presente estudio tuvo como objetivo desarrollar un modelo de la enfermedad de Wilson en Drosophila melanogaster. Inicialmente se evaluó el efecto de la suplementación con concentraciones de 31 µM y 47 µM de cobre en la sobrevida. Posteriormente se realizaron estudios de conducta para determinar si existían alteraciones en el desempeño motor asociadas al tratamiento con la dosis de 47 µM de cobre. Los resultados obtenidos sugieren que el tratamiento con cobre disminuye la viabilidad de la Drosophila. La disminución de la sobrevida estuvo asociada a un aumento y una disminución de los registros de actividad motora en las etapas tempranas y tardías de la intoxicación respectivamente. Por último, se evaluó el papel del sistema de neurotransmisión dopaminérgico sobre las alteraciones conductuales inducidas por el cobre. El tratamiento con el precursor de la dopamina, L-dopa, indujo un aumento de la actividad motora similar al inducido por el cobre. Por el contrario, el tratamiento con Flufenazina, un antagonista de los receptores dopaminérgicos D2, fue capaz de impedir las alteraciones conductuales en todas las edades evaluadas. Estos resultados sugieren que la Drosophila melanogaster podría ser empleada como modelo para el estudio de posibles intervenciones con potencial terapéutico en la enfermedad de Wilson.


Wilson disease is a hereditary disorder caused by mutations of the ATP7B gene, which leads to intoxication with copper as a result of an unbalance of copper homeostasis. The clinical manifestations resulting from this intoxication are related to the affectation of liver and the encephalon in most cases. Several animal models are currently available for the study of the malady. However, in such models no neurological symptoms are observed, which limits their use for the study of pathogenic effects of this disease on the central nervous system. The aim of the present study was to evaluate if copper feeding could induce a disease state in Drosophila melanogaster to model Wilson disease. The effect of the feeding of copper at the doses of 31 µM and 47 µM on the survival was initially evaluated. Next, behavioral experiments were conducted to determine whether the motor performance was altered by the 47 µM concentration. The results suggest that copper treatment decreases the viability of the flies. In addition, the decrease of viability was associated to an increase and decrease of spontaneous motor activity at early and late stages of the intoxication, respectively. Finally, the role of the dopaminergic neurotransmission system on the observed motor alterations was evaluated. The dopamine precursor L-dopa increased motor activity. In contrast, D2 receptor antagonist, Fluphenazine, was able to block both the increase and decrease of motor activity scores induced by copper. These results suggest that Drosophila melanogaster could be used as a model organism for the study of possible interventions with potential neuroprotective effects in Wilson disease.


Subject(s)
Animals , Female , Humans , Male , Copper Sulfate/toxicity , Disease Models, Animal , Drosophila melanogaster/drug effects , Hepatolenticular Degeneration , Longevity/drug effects , Motor Activity/drug effects , Synaptic Transmission/drug effects , Age Factors , Disease Progression , Dopamine Agents/pharmacology , Dopamine Antagonists/pharmacology , Dopaminergic Neurons/drug effects , Drosophila melanogaster/physiology , Fluphenazine/pharmacology , Levodopa/pharmacology , Sampling Studies
9.
Biol. Res ; 46(2): 147-152, 2013. graf, tab
Article in English | LILACS | ID: lil-683991

ABSTRACT

Electrolyzed-reduced water (ERW) scavenges reactive oxygen species and is a powerful anti-oxidant. A positive correlation between oxidative stress and aging has been proved in many model organisms. In Caenorhabditis elegans, many long-lived mutants showed reduced fertility as a trade off against longevity phenotype. We aimed to study the effect of ERW on oxidative stress, fertility and lifespan of C. elegans. We also investigated the genetic pathway involved in the effect of ERW on resistance to oxidative stress and lifespan. We compared lifespan and fertility of worms in media prepared with distilled water and ERW. ERW significantly extended lifespan and increased the number of progeny produced. Then the effect of ERW on resistance to oxidative stress and lifespan of long-lived mutants was determined. ERW increased resistance to oxidative stress and lifespan of eat-2, a genetic model of dietary restriction, but had no effect on those of age-1, which is involved in insulin/insulin-like growth factor (IGF)-1-like signal. In addition, knockdown of daf-16, the downstream mediator of insulin/IGF-1-like signal, completely prevented the effect of ERW on lifespan. These findings suggest that ERW can extend lifespan without accompanying reduced fertility and modulate resistance to oxidative stress and lifespan via insulin/IGF-1-like signal in C. elegans.


Subject(s)
Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Caenorhabditis elegans/drug effects , Longevity/drug effects , Oxidative Stress/drug effects , Water/chemistry , Aging/drug effects , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Fertility/drug effects , Fertility/genetics , Insulin-Like Growth Factor I/metabolism , Insulin/metabolism , Longevity/genetics , Survival Analysis , Signal Transduction/drug effects , Transcription Factors/genetics
10.
Invest. clín ; 53(3): 250-261, sep. 2012. ilus
Article in English | LILACS | ID: lil-676476

ABSTRACT

Aging and reduced longevity are due in part to the action of free radicals (FR). Melatonin (Mel) and thioctic acid (TA) are effective in protecting against the damage caused by FR. In this study, the effect of Mel and TA on the life cycle of Drosophila melanogaster was determined. We used a control group of flies, another group that was provided with Mel (0.43 mM) throughout their life cycle (Mel-c), a third group received Mel upon reaching adulthood (Mel-a) and two groups were fed with TA (2.15 mM) in the same manner (TA-c and TA-a). The number of eclosed, survival, phenotype changes, motor activity and the content of malondialdehyde (MDA) was evaluated in each group. Mel-c increased the eclosion rate and the motor activity of the flies. Mel-c and Mel-a increased the life span and decreased the concentrations of MDA. By contrast, TA-c diminished the eclosion rate, produced phenotypic changes and increased MDA levels and motor activity of the flies. TA-a extended the life span of flies, and did not alter MDA levels and motor activity when compared with the control group. In conclusion, Mel mitigated the effects caused by FR generated during aging, while TA-c increased lipid peroxidation and altered the phenotype of flies.


El envejecimiento y la disminución de la longevidad se deben, en parte, a la acción de los radicales libres (RL). La melatonina (Mel) y el ácido tióctico (AT) son antioxidantes efectivos contra el daño ocasionado por los RL. En este estudio se determinó el efecto de la Mel y el AT en el ciclo de vida de la Drosophila melanogaster. Se utilizó un grupo de moscas control, otro grupo al que se le suministró Mel (0,43 mM) durante todo su ciclo de vida (Mel-c), un tercer grupo recibió Mel al alcanzar la adultez (Mel-a) y dos grupos a los que se le suministró AT (2,15 mM) de la misma manera (AT-c y AT-a). Se evaluó el número de eclosionados, la sobrevida, el fenotipo, la actividad motora y el contenido de malondialdehído (MDA) en cada uno de los grupos. Mel-c incrementó la tasa de eclosión y aumentó la actividad motora. Mel-a y Mel-c aumentaron la sobrevida y disminuyeron las concentraciones de MDA. Por el contrario, el AT-c disminuyó la tasa de eclosión, produjo cambios fenotípicos, no afectó la sobrevida de las moscas, aumentó los niveles de MDA y la actividad motora. El AT-a extendió la duración de la vida de los animales, no alteró los niveles de MDA, ni la actividad motora al comparar con el grupo control. En conclusión, la Mel mitigó los efectos causados por los RL generados durante el envejecimiento, mientras que el AT-c aumentó la peroxidación lipídica y alteró el fenotipo de las moscas.


Subject(s)
Animals , Female , Humans , Male , Antioxidants/pharmacology , Drosophila melanogaster/drug effects , Longevity/drug effects , Melatonin/pharmacology , Thioctic Acid/pharmacology
11.
Egyptian Journal of Hospital Medicine [The]. 2011; 45 (October): 443-456
in English | IMEMR | ID: emr-145536

ABSTRACT

The present study was carried out to evaluate the effect of aging and anti-aging hormones on the kidney, the thyroid and the testis of aged male albino rats from the physiological and histological points of view. Thirty five male rats were used in the present study. They were allocated into five groups. The first group [5 months old] served as control group and the other remaining groups are [18 months old]. The second group 1 ml/kg b.w. corn oil intramuscular injection through a period of two weeks. The third group received 2mg/kg b.w. of melatonin hormone orally daily for two weeks. The fourth group received 0.57 mg/kg b.w. of testosterone hormone via intramuscular injection through two weeks. The fifth group received the same dose of both hormones [Melatonin and Testosterone] for two weeks. Some biochemical parameters of the kidney, the thyroid and histological structure of the testis were examined. The untreated aged group showed insignificant change in urea level with highly significant decrease in creatinine, T[3] and T[4] hormones levels. The melatonin treated group showed significant decrease in urea level with highly significant decrease in creatinine, T[3] and T[4] hormones. The testosterone treated group showed highly significant increase in urea, T[3] and T[4] hormones and highly significant decrease in creatinine level. Whereas, fifth group showed significant decrease in urea accompanied with a highly significant decrease in creatinine and highly significant increase in T[3] with a significant increase in T[4]. The histological changes induced by aging and anti-aging hormones included intertubular haemorrhage, odematous areas present between the seminiferous tubules. The interstitial tissue was degenerated. The degenerated seminiferous tubules revealed maturation arrest in late-stage spermatides. In conclusion, aging and anti-aging hormones administration into adult male rats exerts a clear effect on the kidney and the thyroid functions and on the testicular structure. On the other hand, amelioration in T3 and T4 serum level was found in anti-aging treated rats compared with untreated aged rats


Subject(s)
Male , Animals, Laboratory , Melatonin , Testosterone , Longevity/drug effects , Thyroid Function Tests , Kidney/therapy , Testis/ultrastructure , Microscopy, Electron , Rats , Male
12.
Mem. Inst. Oswaldo Cruz ; 104(1): 43-47, Feb. 2009. ilus, graf, tab
Article in English | LILACS | ID: lil-507205

ABSTRACT

The control of Aedes aegypti is impaired due to the development of resistance to chemical insecticides. Insect Growth Regulators (IGR) exhibit distinct mechanisms of action and are considered potential vector control alternatives. Studies regarding the effects of sublethal IGR doses on the viability of resulting adults will contribute to eval-uating their impact in the field. We analyzed several aspects of Ae. aegypti adults surviving exposure to a partially lethal dose of triflumuron, a chitin synthesis inhibitor. A highly significant difference in the proportion of males and females was noted in the triflumuron-exposed group (65.0 percent males) compared to the controls (50.2 percent males). Triflumuron affected adult longevity, particularly for females; after 16 days, only 29.2 percent of males and 13.8 percent of females were alive, in contrast with 94 percent survival of the control mosquitoes. The locomotor activity was reduced and the blood-feeding ability of the treated females was also affected (90.4 percent and 48.4 percent of the control and triflumuron-exposed females, respectively, successfully ingested blood). Triflumuron-surviving females ingested roughly 30 percent less blood and laid 25 percent fewer eggs than the control females. The treated males and females exhibited a diminished ability to copulate, resulting in less viable eggs.


Subject(s)
Animals , Female , Male , Aedes/drug effects , Benzamides/pharmacology , Chitin/antagonists & inhibitors , Insecticides/pharmacology , Chitin/biosynthesis , Feeding Behavior/drug effects , Longevity/drug effects , Ovum/drug effects , Sexual Behavior, Animal/drug effects
14.
Indian J Med Sci ; 1999 Sep; 53(9): 390-2
Article in English | IMSEAR | ID: sea-67578

ABSTRACT

Based on ideal conditions technical life span of human kind is approximately 110-120 years. Although number of studies including calorie restriction and antiparkinsonism drug (deprenyl) have indicated increased life span in animals, it is premature to expect them to increase life span in man. However, current studies like activation of immune system with DHEA in man and anticipation of antioxidant therapy contributing to increased life span are encouraging. Practice of meditation particularly TM and balanced diet might be contributory.


Subject(s)
Animals , Antioxidants/pharmacology , Hormones/metabolism , Humans , Immune System/physiology , Life Expectancy , Longevity/drug effects , Meditation
16.
Southeast Asian J Trop Med Public Health ; 1992 Mar; 23(1): 121-4
Article in English | IMSEAR | ID: sea-31007

ABSTRACT

Longevity of the adults of three vector species, Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti was drastically reduced when they were exposed at larval and pupal stages to sublethal concentrations of an insect growth regulator hexaflumuron. When the three species were exposed to 0.05 mg/l at the pupal stage, males and females of Cx. quinquefasciatus suffered a more shortened life span than other species. Among the females whose feeding activity was adversely affected by IGR treatment at the pupal stage, Ae. aegypti showed the minimum survival duration with LT50 of 2.74 days.


Subject(s)
Aedes/growth & development , Animals , Anopheles/growth & development , Benzamides , Culex/growth & development , Evaluation Studies as Topic , Female , Insecticides , Larva/growth & development , Lethal Dose 50 , Longevity/drug effects , Male , Mosquito Control/methods , Phenylurea Compounds , Pupa/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL